The Caldron and the Laser

11 July 2018

Over the past few weeks, I’ve finally managed to explore a new part of Southwest Idaho and attempt some astrophotography.

I came across mention of the southernmost part of the Snake River and how it was also a mere 40 feet across at that point. Even the name, Caldron Linn, aroused my curiosity. I had to go looking and find where it was and why the name.

A bit of research finally pinpointed where it was on the map: close enough for a day trip. I hit up a friend to see if he wanted to check it out with me and when he found out where it was, he recommended a burger joint in Twin Falls for lunch: the Buffalo Cafe.

Caldron Linn has an interesting history. Linn is an old Scottish word for waterfall. So, essentially the name means Caldron Waterfall. It’s actually a series of waterfalls, three at this time of the year. The best time to go see it appears to be the March-May time frame rather than our late June outing.

Image of Caldron Linn showing the three main falls at the time we were there. For some sense of scale, the bottom falls is 20 to 30 feet.

From the historical roadside sign south of the falls:

In 1811 the Hunt party likened the terrific torrent of the Snake to a boiling caldron, adding the old Scottish word “Linn,” meaning a waterfall. They had lost a man and a canoe in a roaring chute upstream. Finding worse water ahead they abandoned river travel. Next year, another explorer said of Caldron Linn, “Its terrific appearance beggars all description.”

Even with the water low as it was when we visited, it’s still an impressive sight. I could spend all day there just enjoying the place and taking pictures. I definitely intend to return and spend the night. Aside from the wonderful day pictures possible, if I have done my homework properly, the Milky Way rises right up from the waterfalls, or pretty dang close.

Identifying the direction and location of a possible astrophotograph using the Android app Dioptra.

There is no approach to Caldron Linn from the south side, it’s all private land. To get to the falls, you must make the approach from the north. There’s a dirt road that includes a couple of switchbacks as you drop down into the canyon. I would not take a regular car there. Really, I recommend a pickup or SUV with decent clearance instead. Or bikes or quads, of course. Just use common sense!!

Pano of the Caldron Linn area from up on the rim of the canyon. There’s another switchback just left of where this was taken, right where you drop off the rim and start the road down to the caldron.

Now for the laser part….

When I do my astrophotography, one of the difficulties is knowing exactly where my camera is aimed against the black sky and how much of that area is actually going to be covered in the image.

Before I explain my simple technique, let me give you a few, very stern warnings.

First, lasers are dangerous. There’s no question about that. Pointing them into someone’s face risks blinding them or at the very least burning out a section of their sight. Never point a laser device at anyone’s face.

Second, it’s not only dangerous, it’s also illegal to point them at any airplanes. ALWAYS, always scan the sky to make sure there are no flashing, blinking lights moving across your view or near it. If there are, wait until they are gone. If they keep coming and going, just don’t use the laser…better safe than sorry!

Third, do NOT shine your laser through the camera from either end. You risk damaging the optics or the sensor.

The laser pointer is also wonderful for pointing out exactly where in the sky things are. For example, you can point your finger at Cassiopeia and say, “It’s that W on it’s side right there” but with so many stars, which ones make up the W you are referring to? With the laser you can point exactly to each star and draw from star to star, showing them exactly the W you are talking about. Or point out which “star” is Jupiter.

That said, I use my laser pointer to let me see where my camera is generally aimed and then exactly what part of the sky the image will cover. It’s also faster than making an exposure then adjusting the camera until you have what you want.

This is the laser pointer I use. It’s a brilliant green beam from hitting the dust in the air. Red might be better for preserving your night vision, but I’ve not noticed any issues using this green one.

Here’s how I do it:

  1. Eyeball aim the camera in the general direction of my subject by visually aligning the camera lens with the center of the area I want to cover.

  2. Put the laser pointer on the top of the lens and see if it points where I want it to. Adjust as necessary.

  3. While looking through the viewfinder and holding the laser pointer beside the camera, move the laser beam until you see it in the viewfinder.

  4. Move the laser pointer until it points, one at a time, to the four corners of the viewfinder. Hold the laser steady and take a quick look over the camera to see what part of the sky as a whole the beam points to.

  5. Adjust camera as required until the laser pointer, as seen at the viewfinder corners (repeating steps 3 & 4), covers the desired area of the sky.

NOTE, in no instance in the steps above do I point the laser pointer through the camera viewfinder. I hold it beside the camera, point it at my target, and check to see it in the viewfinder.

Steps 3, 4 and 5 actually involve repeatedly looking both through the viewfinder and over the camera at the sky so that I get an accurate idea of what part of the sky is framed in the viewfinder based on where the laser pointer beam is. That lets me know if the composition is what I want.

This is what my laser beam looks like when seen through the viewfinder. Since this was a long exposure (20 seconds), the beam in the image is fatter and dimmer from not being held steady. Visually, it’s actually a pencil thin bright green line out to whatever you’re pointing at.

Check out the above photo of the laser beam as seen when viewed through the viewfinder and you’ll get the idea. Notice how it goes off the image left? That’s because I am using the laser pointer in my left hand near the top left of the camera.

With the same caveats, this process also works well for aiming your telescope at something in the night sky. It’s especially useful if you’re talking with someone else and one of you is trying to tell or show the other where the object of interest is. With the laser pointer, they can point right at it and held on top of your telescope tube, you can quickly point the telescope to the right spot.

That’s it for this posting.

Advertisements

A Return to Stereograms

4 April 2018

I have mentioned working on stereograms previously. These last couple of weeks have seen me focused on them.

Stereogram created from drone video taken at Wickahoney. See text for details.

Most that I have done before are close-ups, if you will, or portrait oriented.

I wanted to play with stereograms some more, this time focusing on landscapes. My goals were, first, to get them working consistently and second to hopefully work out any rules unique to stereograms.

In my mind’s eye, I remember sitting on the floor at my grandparent’s with a big box of stereograms and a now antique viewer. I would pick out a card with it’s two slides, read the caption, drop it in the holder, and clap the stereoscope to my face. I remember being fascinated how I could see a 3D version of a scene and how it contrasted from the pictures on the wall.

More, I remember most of them were landscapes.

Now, I’ll grant you my memories of those images are likely rose colored by time and they may not have been as fantastically 3D as I seem to remember. Most indubitably, though, there were hundreds of landscapes and not so many of flowers, people, or objects.

My goal in this recent project was to create valid 3D landscape stereograms. I also needed to work out what the limitations were, and how best to create a pleasing image that was also 3D.

Like this one:

One of the spots that overlooks Swan Falls and the Snake River Canyon, looking downstream from the dam.

Or this one, where the red rock formation just pops out at you:

Looking at Swan Falls Dam and the Snake River Canyon. The red rock is very prominent in the foreground.

What are the rules?

Aside from standard landscape photography composition “rules” I felt there must be some additional guidelines that would drive the composition.

As it turns out, there are, and there aren’t.

One of the things that you need to keep in mind when creating stereograms is:

  1. Take a picture of your subject. Remember where the center of your picture is on the subject.
  2. Take a step to the left. I usually stand with my feet just more than shoulder width apart. After taking the first picture, I move my right foot to touch my left foot then move the left foot so I am again standing with feet apart.
  3. Aim the camera at the exact same point on the subject as before.
  4. Take another picture.

That is my way of getting paired, handheld pictures. The first picture taken thus becomes the “right” picture (as in taken from the right) and the second becomes the “left” picture. The key to assembling the stereogram is the right picture goes on the left side and the left picture goes on the right side.

You can, of course, do it stepping to the left instead. In this case the first image becomes the left picture and the second becomes the right picture. No biggie, just get into the habit of doing it the same way each time.

There’s times a question arises whether or not the middle and far parts of the photograph actually show as 3D. Sometimes they do, sometimes they don’t. Sometimes they work if you have some decent foreground detail, other times you don’t need that foreground to make it work.

Willow Creek, off Black’s Creek Road. Notice the apparent differences in 3D impact in this compared to the Swan Falls stereograms.

And then, there’s the issue of anything that’s moving…that’s likely to produce “ghosts”, faint or translucent objects in the photo. Your main scene, the one you want to see in 3D, has to be still. Trees moving in the wind, clouds passing by overhead, cars on the road, people moving…all those and more need to be avoided.

One way to avoid natural movements such as clouds and water ripples is to use a long exposure time. That way, things get “smudged” smooth. Ripples on water, for example, become a soft flat surface and clouds become featureless.

Interestingly enough, I have one stereogram (below) where the two angles are such that one shows the parked truck and the other doesn’t, and yet the truck is solid in the stereogram view. It’s not a translucent ghost due to being in only one of the paired images. Yet another stereogram I’ve done freezes a car in one picture but it’s not in the other and this time it shows as a ghost car. Go figure. That’s what I mean about “there are and there aren’t additional guidelines.” More likely I haven’t figured them out yet.

Notice how the black truck is in one image but not the other, yet still comes through in the stereogram as solid, not as a ghost image.

By the way, the Wickahoney stereograms were all pulled from a video created by orbiting my DJI Phantom 4 around the midpoint of the ruins. You do remember that a video is merely a string of still images played back rapidly? Each pair, in this case, were pulled from about 1 second apart, e.g. one would be from 13 seconds into the video, and the second of the pair would be from 14 seconds into the video. When doing this, creating a stereogram from a video, you want to be sure the video still image isn’t blurry due to the drone moving too fast, to continue this example.

Stereogram from Wickahoney drone video.

One thing I did discover is that if you use a zoom or telephoto lens to enlarge something in the distance and make it part of your foreground or the middle distance in the photograph, you have to displace the camera location much more than a single step to one side. A problem I encountered was I could properly displace the distant solitary tree but the mountains behind it shifted significantly. They shifted enough that even though I could get the tree to be reasonably 3D, the more distant mountains were blurry.

A wide angle lens, though, works great and lets you really bring in some foreground:

Snake River Canyon from an overlook at Swan Falls, looking upriver from the dam.

And that’s as far as I’ve got. I’ll be going out and shooting more landscapes, as well as some closer subjects.

I think I know how to apply this technique to video as well and plan to try it with the video used to make the above Wickahoney stereograms. That’s for another time, though.

Morse in a New Year

25 January 2018

One of the things I’ve done in the past few weeks is build a new keyboard for this computer. It’s what’s called a straight key in radio circles.

Telegraph key being used as a USB keyboard on my computer.

Yep, it’s real. And it works. I actually used it to type (key?) in some of this blog post. It’s literally just an USB cable, a Teensy 3.1, and a Morse code key. I’m going to mount the Teensy in the bottom of the board, but for now it’s on the protoboard until I get all my code changes done.

So, why? What the heck would I do that for when I have a perfectly good computer keyboard?

At the start of 2018 I was once again thinking I wanted to find a way to really make myself learn Morse Code. A way that would guarantee I would learn it.

Among other times, I want to use my mobile radio when I’m out and about but don’t have the computer with me. Normally, I use PSK-31 which is computer-to-computer via amateur radio. For that, obviously, I have to have a laptop with me. The thing is, I don’t always have one with me and sometimes I will be out in the Owyhees at a spot where I’d like to see if I can have a QSO (conversation) on the radio. No laptop, no QSO.

The obvious question is, why don’t I just sit down and learn it?

Well, I could, but I’m lazy and I know it. Also, I already know about half the alphabet and numbers and a punctuation mark or two. So, what’s the problem? It’s no fun for me just sitting and memorizing the International Morse Code. I can, but that’s boring.

I began to wonder if I could somehow replace my QWERTY keyboard with a straight key. I took the path of least resistance and started searching online to see if anyone had done something like this with an Arduino or Teensy. It turns out several people had and made their code and schematics freely available.

After studying a few of them, I zeroed in on Nomblr’s rebuild of her dad’s old telegraph key. Her code was clean and the schematic about as simple as it ever gets so I leveraged off her work. The good thing was I happened to have a Teensy 3.1 in my “hell box” (as in “where the hell is it?”).

I dug out the Teensy 3.1, connected the straight key to the Teensy, plugged the USB cable into the Teensy and the computer. For testing, I simply downloaded Nomblr’s code to the Teensy, opened up Notepad++, and tried the key. I used the programmer’s holy first test: …. . .-.. .-.. — .– — .-. .-.. -..

To my immense pleasure, the letters started showing up in Notepad++ right away: hello world.

OK, so I had to look up two of those letters. That’s the whole point. I can now use the telegraph key to write on the computer, and to do so, I have to learn the Morse code letters I don’t know. Sure, it’ll be slow for a bit here and there but over the next few days or weeks I’ll be up to speed. And I’ll have learned the International Morse Code much faster than otherwise. Much.

I have already made some tweaks to her code and am in the process of adding some extra bells and whistles that I think will be useful to me. For example, I’ve added in a couple of prosigns like CQ and SOS. Keying in SOS, for example, corresponds to pressing F1 on a QWERTY keyboard. I’ve added in the punctuation from the International Morse Code table, and I’ve set up “……..” which is Morse for “error” to mimic pressing the backspace key on a regular keyboard.

Now I’ve got a fun and productive way to learn Morse code. One that not only ensures I’ll learn it, but also lets me practice sending and have fun doing so.

Soon, I’ll be on the airwaves with CW.

Future tweaks to this setup include adding a way to adjust the words-per-minute of the program. Currently it’s hard-coded and to change it to work smoothly with a faster or slower WPM I have to modify the code and dump it to the Teensy. Not difficult, but also not ideal, especially as my speed improves.

I do want to increase my speed, but one caveat is that I need to ensure that I don’t send faster than I can receive. For that reason, among others, another mod is to add a display to show what my actual WPM is as I use the key.

As to why a straight key instead of an iambic paddle…I’m of German descent, which gives me a Stubborn bonus of +4. 😉